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In this article, we present a diffusion-generated approach for evolving multiple
junctions. This work generalizes an earlier method by Merriman, Bence, and Osher
which alternately diffuses and sharpens characteristic functions for each phase region
to produce pure mean curvature flow. Specifically, our new method produces a normal
velocity which depends on a positive multiple of the curvature of the interface plus
the difference in bulk energy densities for prescribed junction angles. This simple
method naturally treats topological mergings and breakings, produces no overlapping
regions or vacuums, and can be made very fast. Numerical studies are provided which
show that our method agrees with front tracking and a recent variational approach
for a variety of examples. Asymptotic expansions are also carried out near junctions
to justify our algorithms. @ 1998 Academic Press

1. INTRODUCTION

In avariety of applications, one wants to follow the motion of a front that moves with so
curvature-dependent speed. For the special case of pure mean curvature flow, junctic
moving surfaces have been treated by alternately diffusing and sharpening the charactt
functions for each phase region [9, 10]. In this work, we generalize this diffusion-gener:
approach to allow each interface to move with a normal velocity equal to a positive mult
of its curvaturek, plus a constant.

In two dimensions, the simplest model that we consider involves three curves meetil
a point with prescribed anglés, 6,, andds. Each interfacel’;;, separates regiors; and
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Vo3 = Tp3Kpy+ €54

L®

FIG. 1. The interfacesl’j;, move with a normal velocity;; = yij«i; + &; and are subject to anglés 6., 6;.

Q; and moves with a normal velocity,
vij = ¥ijKij + € 1)

as is shown in Fig. 1.

A simple motivation for this model is obtained by associating an energy functional w
the system [11, 18]: Givendistinct regions, we set the total energy of the system equal
the interface energy

Einterface = Z fij Length(Tj;)

I<i<j=<r

plus the bulk energy

r
Ebuk = Z b Area(%2)),

i=1

where fj; is the constant surface tensionlgf andb; is the (constant) bulk energy density
for ;. The corresponding gradient flow is then given by

vij = wij (fijkij + b —bj), )

wherek;; anduij denote, respectively, the local curvature and the constant mobility of |
interfacerl’;; [11]. The velocity of the model (1) is then obtained by setting= ;j fi; and

&; = uij (b —by) in Eq. (2) above. See [1, 3, 11, 17, 18] for further details on the moc
and its derivation.

To numerically approximate motions of the form (1), several methods have been de
oped. Front tracking methods (e.g., [4]) are often well-suited for curves that never c
because they explicitly approximate the motion of the interface rather than a level s
some higher dimensional function. When line or planar segments interact, however
cisions must be made as to whether to insert or delete segments. Because compl
topological changes can occur for the model problem (1) implementation of front track
methods is often impractical, especially for more than two dimensions.

Other approaches also have limitations. Monte-Carlo methods for Potts models ca
troduce unwanted anisotropy into the motion due to the spatial mesh [17] and are typi
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too slow to find accurate approximations of the model. Phase field methods may als
used, but these are often inherently too expensive for practical computation [10] bec
they represent the interface as an internal layer, and thus require an extremely fine me
least locally) to resolve this layer.

To address these concerns for the case of pure mean curvature flow (i.¢;; eadhand
e; = 0), a method (MBO) based on alternatively diffusing and sharpening characteri
functions was proposed by Merriman, Bence, and Osher [9, 10]. This method natut
handles complicated topological changes with junctions in several dimensions. Furthern
this method can be made efficient by discretizing in space using a Fourier spectral basi
using a quadrature to determine the Fourier coefficients at each step [13, 14]. Similar
all other methods for multiple phase problems, no convergence results are known fo
MBO-method. However, [6, 2] do give rigorous convergence proofs for two phase m
curvature motion and [8, 13] give some further asymptotic results.

To allow for the more general motion (1), a variational approach was recently propo
[18] which gives a practical method for treating junctions even when topological me
ings and breakings occur. This interesting approach is especially well-suited for tres
problems with additional constraints. Unfortunately, it is unable to approximate many pr
lems involvingr > 3 phase regions since onlyindependeny;; or &; may be prescribed
Furthermore, this method limits angles to the classical condition (see, e.g., [16])

sin(6,) . sin(6,) _ sin(83)
Y23 B Y13 B Y12

®)

at triple points and is relatively slow when compared to the MBO-method for the cas
pure mean curvature flow.

In this paper, we develop algorithms for the multiphase model (1) for any humbel
phase regions which retain the speed and much of the simplicity of the MBO-metf
Although the methods given throughout this paper are semi-discrete, we note that éffic
implementations are possible using the algorithms described in [13, 14]. An outline of
paper follows.

In Section 2, we give the MBO-method for two phase and multiple phase problems.

Section 3 generalizes the MBO-method to nonsymmetric junctions by replacing the sh
ening step with a new decision. Asymptotic and numerical justifications of our algorit
are also given.

In Section 4, we diffuse each characteristic function a number of times (once fop,gach
and combine the results with the nonsymmetric junction algorithm. This gives a methoc
evolving each branch with a normal speeg y; « for prescribed angle conditions. For the
special (but important) case where the angles obey the classical condition (3), asymy
and numerical justifications of our algorithms are given.

By changing the sharpening decision, Sections 5 and 6 extend these methods to m
which involve bulk energies and any number of phase regions. Numerical justification
our methods are given and an example of a four-phase problem which cannot be tre
using the variational approach is also provided.

Section 7 concludes by summarizing our results and discussing some possible are
future research.

2 Using a step sizét, O((1/At) log(At)) operations are needed for each step of the algorithm [13, 14].
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2. THE MBO-METHOD

An algorithm for following interfaces propagating with a normal velocity equal to me:
curvature was introduced by Merriman, Bence, and Osher [9, 10]. In this section, we
cribe the method for the two phase and multiple phase problems. Subsequent sectiot
scribe new algorithms which generalize these methods to the multiphase motions desc

by Eq. (1).

2.1. The Two Phase Problem

Suppose we wish to follow an interface moving with a normal velocity equal to its me
curvature. To evolve a surface according to this motion, we may use the MBO-methoc
two regions:

MBO-Method(Two Regions

BEGIN
(1) SetU equal to the characteristic function for the initial region.
ie. setU(x,0) = 1 if X belgngs to the initial region
0 otherwise
REPEAT for all stepsj, from 1 to the final step:
BEGIN

(2) Apply diffusior? to U for some time At.

Uy = V2U,

=0 ondD
starting fromU (X, (j — 1)At).

(3) “Sharpen” the diffused region by setting

1 ifux jay >3

0 otherwise

i.e, findU(x, jAt) using{

U(X,jAt):{

END
END

For any timet, the level sefx : U(x,t) = %} gives the location of the interface.
An extension to the case where the normal velocity equals the mean curvature p
constant,

Uh=a-—+«k
is also possible. This motion can be obtained by following the level set

a ﬁ 4)
b

NI
|
NI

instead of the usual level set &f8].

3 Here we have selected zero flux boundary conditions to ensure that the curve meets the boundary a
angles, as is appropriate for certain grain growth models [4]. Alternatively, one may minimize the effect
the boundary by selecting non-reflecting boundary conditiéﬁ@é; 0, (cf. [18]) or use Dirichlet conditions to
produce a constrained motion.
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2.2. Multiple Regions

To obtain a normal velocity equal to the mean curvature for symmetric junctions (e
a 120-120-120 degree junction in two dimensions), we may apply the MBO-method
multiple regions:

MBO-Method(Multiple (r) Regions.

BEGIN
(D) Fori=1,...,r
SetU; (x, 0) equal to the characteristic function for titl region.
REPEAT for all stepsj, from 1 to the final step:
BEGIN
(2) Fori=1,...,r, starting fromU; (x, (j — 1) At),
Apply diffusion toU; for some time sliceAt.
M= vy,
=0 ondD.
(3) “Sharpen” the diffused regions by setting the lardgseéqual to 1 and the
others equal to O for each point on the domain.
END
END

i.e., find Uj(x, jAt) using{

For any timet, the interfaces are given naturally as the boundaries of the characteristic

3. NONSYMMETRIC JUNCTIONS

The MBO-method for regions uses a symmetric projection step which results in
approximation of a 120-120-120 degree junction. We now extend the method to allow
nonsymmetric junctions and justify our algorithm asymptotically and experimentally.

Throughout the next three sections, we will consider the three phase case. See Sec
for an extension to more phase regions.

3.1. Nonsymmetric Junction Algorithm

We now generalize the sharpening step for the MBO-method to obtain an algorithir
nonsymmetric junctions.
Begin by noting that

O<Uix,t) <1,

3
Zui(x,t):l
i=1

for all t since diffusion in linear an[?zl U; (X, 0) = 1. Thus, the ordered tripletdJ;, Uy,
Us), form a triangular region with corners (0, 0, 1), (0, 1, 0), and (1, 0, QxinBy
mapping this triangular region onto its corner points we obtain a useful representatio
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FIG. 2. The sharpening decision can be represented using a projection triangle. For the symmetric cas
regionsRy, R,, and R; meet at straight lines which pass throt@h % %) and the midpoints of the edges of the
triangular domain.

the sharpening step [8, 10]. For example, the symmetric sharpening is obtained by se

0,0, if (Ug,Up,Uz) e Ry
Uz, Uz, U3) = ¢ (0,1,0) if (U,Uz,U3) e Ry
(1,0,0 if (U1, U2, Us3) € Rs,

whereR;, R,, andR; divide the triangular domain symmetrically, as shown in Fig. 2. Othe
nonsymmetric, angle configurations are obtained by taking different choicd®, fdr,,
andRs.

We now develop a method for determinifiy, Ry, and R; for curves which meet at a
stabled;-6,-03 angle configuration. To derive this method we note that in the absence
boundary effects (cf. [8]),

straight lines which form a junction satisfying the desired angle
conditions must remain stationary for all subsequent tines,

(e.g., Fig. 3).

By enforcing this simple, but necessary condition we are led to the following algorithm
constructing projection triangles:

Initial Regions, t = 0 Later Regions, t > 0

FIG. 3. Straight lines forming,-6,-6; angles should remain stationary.
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.

FIG. 4. Initial regions.

PROJECTIONTRIANGLE ALGORITHM.

Given an angle configuratiah, 6, 6s:
1. Define lines
~ 1
' = {(r, 91) or >0},

~ 1

N3 = {(r —591) r > 0},

~ 1

I3 = {<r 291+92) or >0}

and regions$2, 2, 3 as indicated by Fig. 4. Here, a circular domain has been
selected for simplicity.

2. Sety; equal to the characteristic function f&, 1 < i < 3, as shown in Fig. 5.

. Apply diffusion to eacly;, 1 <i < 3, foratimer < At as is illustrated in Fig. 6.

4. Map each Iind:ij onto the projection triangle to form the boundariﬁf,,between
regionsR; andR;,

N

w

[y = (200, x2%). x3(0)) : X € T} }

asisillustratediin Fig. 7. Itis convenient to represel?m; in polar coordinates centered
about the junction (see Fig. 8). Using this representation it is straightforward to de
mine which region a poinP = (r, 6) belongs since

Ry if O1o(r p) < 9p Ol’ep < O13(r p)
Pe R, if Bo3(r p) < Qp < O1(r p)
Rs if 613(rp) < 0p < B23(rp).

Having constructed our projection triangle, it is straightforward to derive the followir
properties [8]:

e Each boundary curve passes through, 2, 2.

e Each curve must also meet the midpoint of an edge of the triangular domain s
this case reduces to the MBO-algorithm for two phases.

40On non-circular domains, only half of each lifig; should be mapped (starting from the junction). By
connecting this result to the midpoint of the nearest edge of the projection triangle, an excellent approximati
f‘ij is formed, provided is sufficiently small.
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X1 X2 X3

FIG.5. Characteristic sets.

Note, however, that the lines connecting these endpoints are typically curved. Th
quite clearly illustrated for a 150—-90-120 degree junction in Fig. 9 and for a wedge-she
junction in Fig. 10. In fact, only the symmetric case and the 180-90-90 degree “T-Junct
are comprised of straight lines (see Fig. 11).

3.2. Error Analysis

In the previous subsection, we proposed an algorithm for evolving junctions which it
at a stable,;—0,—6; angle configuration. We now outline a derivation that shows, symb
ically (using Maple [5]), that each step of the method produce® & At) error in the
junction angles which is rapidly dissipated in subsequent steps.

Due to the length of the expressions arising in our derivation, we provide the main s
of the algorithm, but omit most of the intermediate results. See [13] for greater details
the special case of a symmetric junction.

3.2.1. The initial junction. We wish to derive an expansion for the angles of a tw
dimensional triple junction after one step of our method assuming that the angles initi
approximate the desireéd—6,—63 configuration.

We begin by orienting a polar coordinate system so that some phase region is cen
aboutd = 0. Denote the initial interfaces biy;,, I'13, and '3 and the initial regions by
Q1, 2, andQz as in Fig. 12.

To represent the small deviations from the6,—03 junction configuration we define

€1 = L1310 — 01,
€2 = LIM'1pl"03 — 05,

€3 = (T'130'23 — 03,

where/T'jj Ty is the angle between;; andI'y at the junction.
In order to carry out our expansions, we want an expression for each interface,

Tij = {(r.6r, () :r >0}

X1

FIG. 6. Afteratimer.
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FIG. 7. Projection triangle formed by mappirfgj into x1 + x2 + xs=1.

for some functiongr, (r). Using the above definitions it is straightforward to show that

101 1 o
Or,(r) = 591 + €1 + ilflzr + B <+ O(r?),

1 1 1
Oris(1) = 501+ 02+ Se1+ €2+ Sadl + Baxr?2+ O3,

101 1 .
Or,(r) = —591 — 56 + §K13f + B1arc+ O(r°),

wherexi;j is the curvature of lin€’j; at the origin angb;; are constants independentrof

3.2.2. Approximation of Jand xi. We now want to estimate; at time At andy; at
time, 7. Initially,

1 if (r,0) € Q

ui(r,0,0) = {0 otherwise

for 1 <i < 3. Thus, the Green’s function representatiotJefr, 6, At) gives

Ui(r, 6, At)

1 r2 00 R2 bri(R) rRcoq¢ —0)
= Zeat ex"(‘m)/o exp(‘m> /em@ exp(T)de

00,1

reference
axis

0,1,0) (1,0,0)

FIG.8. The boundaries between regions are conveniently represented in polar coordinates centered ab
junction.
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(0,0,1)

(5/12,1/4,1/3)

(0,1,0) (.5,.5,0) (1,0,0)
FIG. 9. The projection triangle for a 150-90-120 degree junction.
Replacing the exponential in the inner integral by its series, integrating term by term,
applying integration by parts to the result (cf. [8, 13]) yields

bl WAL+ 2 )At
5. €1 N K12 — K13 nﬂlz B13

1 1 . )
+ =— (k12 — K13) COY071) COYO) I + —— (k12 + Kk13) SIN(B) SINO) r
2 2

0
Ui(r, 8, At) = 2—1
JT

1 . 1
+ 27 sin(61) cogo) <\/rA_t) + N cog6,) cog6) El<\/rA_t)
2
+ 1 sin(f1) cog61)(cog(0) — sirf(9)) <r) +h.ot.
4 At

which may be written in Cartesian coordinates as

2 1 1 2
Ui(X,y, At) = El + 5 €1 + m(’fﬂ — Kk13)V At + ;(,312 — B13) At

1 1 .
+ — (k12 — Kk13) COS01) X + — (k12 + k13) SIN(O1) Y
2 2

1 X 1 X
+ ﬁ S|n(91) (ﬁ) + ﬁ 005(91) 61(@)

1 x2 — y?
+ - sin(6,) cog61) (W) + h.o.t. (5)

To determine an expansion for the value )af which arises in the Projection Triangle
Algorithm, simply set
€e1=¢€=¢€3=0,
K12 = k23 = k13 = 0,
Br2= Pz = P13=0
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(0,0,1)

(0,1,0) {.5,.5,0) (1,0,0)

FIG. 10. The projection triangle for a 247.5-67.5—-45 degree junction.

in Eq. (5) to obtain

6 1 . X 1 . x? —y?
x1(X, Y, 7) = > + ﬁ sin(6,) (f) + - sin(6,) cos(éh)( = ) + h.ot. (6)

Expressions for the remainitd) andy; are easily obtained via rotations of Egs. (5) an
(6), respectively.

3.2.3. Angle expansionsWe now seek expansions for the angle configuration of tt
junction after a timeAt.

(0,0,1)

(1/2,1/4,1/4)

(0,1,0) (5,.5,0) (1,0,0)

FIG. 11. The projection triangle for a 180-90-90 degree junction.
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Lo

I-v23 O, = %01 + 36 + 1hior
+bhar? + O(r?)
Oy =30 +0,+ e +e, N T &
+3K237 + Basr? + O(r?)
O,y = —301 — 361 + 3h17
+81ar? + 0(r?)

Q4
FIG. 12. The initial junction.

Begin by lettingl'{}, T'53, and 'Y be the diffusion-generated approximations to th
branches ofthe junction after atimé and parameterize the componentE,(?f accordingto

it = { (2 (9), Y (9) 152 0},

wheres represents arclength from the triple point. Similarly define the components of e
branch[jj, of the stationary problem according to

iy = {(x¢, (). ¥, (9) : s = 0}

To approximate the angle betweEfyf andI'{} we require an expansion for the locatior
of the triple point at timé¢ = At. This is found by substituting our estimates Erinto

Us (xr2: (0), Yo (0), At) = 265,
U2(Xr$t 0, yri?t 0, At) = %92

and deriving the series solution fotrﬁx (0), Yras (0)).
Our next task is to find the slope <15‘fij4t at the triple point. This is accomplished by
substituting our expressions fof andy; into

d d
ds (Ui (Xr.?‘ (9, Yra OF At)]s:o = ds

dS[Xl (Xl:ij (S)’ yl:‘ij (S)’ 7:)jIS:O

d d
3LV (xeae (), Yo (9), A o = - [x1 (%, 9, ¥, 9, 7)oy

where

(X, (0), Y5, (0) = (0,0),

(x£,(0), ¥£_(0) = <cos<%91>,sin(%91>),
1 (1

(x/fla(O), y1/=13(0)> = (Cos<§91>, —S|n<§91) )

(X%23(0)7 Y’fzs(O)) = <cos<%91 + 92> , sin(%el + 92>>
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and deriving series solutions faf. . (0) andy...(0). These expansions give the slope o
ij ij

;" at the triple point,

Vs

mjj = —; .
Xrat 0

From the slopes of each branch, we see that the approximation to the first@nge,
given by

Mz — My3
erztrf?f =T — arCtar(W .
1211113

Expanding this in terms of andAt gives
AtpAt _ At
H‘lz F13 = 01 + ay1€1 + a12€2 + (C11k12 + C1ok23 + C13k13) vV At + h.o.t.
A similar derivation gives the approximation for the second artijle,
AtpAt \/_
LT53T 15 = 02 + @p1€1 + Agoen + (Co1k22 + Cook23 + Cozk13) vV At + h.o.t.

Combining these results into a single equation we obtain

rEr\ ey ey (4
Atpat | +A +C| x23 | VAt +h.ot,,
(T3 (7 €

3 K13

whereA = [g;] andC = [c;;].

Unfortunately, the matrice8 andC are far too complicated to reproduce here. Howeve
we do provide a contour plot of the spectral radiusfofor each angle configuration
(61, 02, 63) in Fig. 13a. This plot indicates that the spectral radius\d$ always less than
1. Similarly, we find that each element Gfis bounded in the interior of the triangle (see
Fig. 13b). Thus, each step of the MBO-method produce®@yAt) error in the junction
angles which is rapidly dissipated during subsequent steps. Summing up such contfibut
over many time steps, we expect to obtain a rapidly converging geometric sum which g
rise to and(+/At) error in total. This is an interesting result because it gives an explanat
for the stability of junction angles and suggests a source aPihgAt) error which arises
in numerical experiments (see the next subsection).

3.3. Numerical Experiments

We now apply our algorithm to problems involving nonsymmetric junctions. See a
[8, 10] for experimental studies of the 180-90-90 degree “T-Junction” case.

To begin, consider the motion by curvature of the three phase problem given in Fig.
Using our nonsymmetric junction algorithm, the position of the triple point and the char

5 This summation step is non-rigorous because it assumes, among other things, thgtandk,; are bounded
independent ofAt.
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(0,0,2Pi)

(0,2Pi,0) (2Pi,0,0)

(0,2Pi,0) (2Pi,0,0)

FIG. 13. Matrix properties for each angle configurati@h, 6,, 65). Note thab; +6,+6; = 27 and each angle
is between 0 and:2 so each configuration must belong to the triangular region with cote@s2r), (0, 2r, 0),
and(2r, 0, 0) in R®. (a) The spectral radius @. (b) The maximum element & = max|c;; |.



180 STEVEN J. RUUTH

Ly3
1 1
09 08
o8 08
07 Q2 07
06 06
=056 Q3 F12 >05
0.4 04
03 03
L
01 01
0 02 0.4 06 08 1 [} 0.2 0.4 08 08 1
x
ST '
Initial Regions, t = 0 Final Regions, t = 0.1

FIG. 14. Atest problem for a 150-90-120 degree junction. Here, ggach 1 and eacts; = 0.

in the area of2; were compared with the exact resBifsr severalAt. The results from a
number of experiments are reported in Table I.

These results are suggestive of@n/At) error which is experimentally the same as
that found for symmetric junctions using the MBO-method [13, 12, 14].

Our new algorithm can even be applied to wedge-shaped regions or to problems w
are initially inconsistent with the desired angle configuration. Consider, for example,
motion by curvature of the three phase problem given in Fig. 15. Using our nonsymme
junction algorithm, the position of the triple point and the change in the arén efere
compared with the exact results for sevesal The results from a number of experiment:
are reported in Table Il.

As found in the previous example, the results are suggestive O @mt) error.

4. GENERALIZED CURVATURE MOTIONS

In the previous section, we described a method that treats nonsymmetric junctions fc
case of pure curvature flow. We now extend the algorithm to the case where each br:
Iij, moves with a normal speed, = yjj«.

Although the algorithm that we provide applies to any angle configuration, our asympt
justification and numerical experiments will assume (for simplicity) the classical condit
(3) at triple points which is well known in the material sciences literature (see, e.g., [1¢

4.1. Generalized Curvature Algorithm

We now generalize diffusion-generated motion to the case wherdgantoves with a
normal velocity,

Un = VijK. (7

6 The “exact results” were computed using Brian Wetton’s front tracking code. See [4].
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TABLE |
Results for a 150-90-120 Degree Junction

Junction position Phase area changetor
At |Error| Conv. raté |Error| Conv. rate

0.01 5.23e-03 — 3.80e-03 —
0.005 4.03e-03 0.38 2.55e-03 0.58
0.0025 3.05e-03 0.41 1.75e-03 0.54
0.00125 2.25e-03 0.43 1.20e-03 0.54
0.000625 1.65e-03 0.45 8.35e-04 0.52
0.0003125 1.20e-03 0.46 5.86e-04 0.51

2 If the error for a step of sizat is E,, then we estimate the convergence rate
as log(|Ezat/Eatl)-

To begin, letU,” be the solution tau =y; V2u after a timeAt, starting from the
characteristic function a2 and set)”i = (U;", U,", U3"). We seek a functionf , which
combinedJ”2, Ur=, andU”s into a single result

U= (Ul’ UZ, U3) — f(UVlZ’ U)/23’ UV13)

which can be input to the sharpening step.
Several desirable properties férare easily identified:

e Certainly, f (U2, U22, U"13) must reduce to the appropridt&i far from the triple
point. Specifically,
f(UVlZ’ UVZ3, U713) ~ UM]

for all points neail;; which are a distance > /At away from the triple point.

o Wewantf tobe asmooth combination of th&i so that the interfaces corresponding
to U are smooth.

L3
1 1
09 09
08 08
o7f QQ 07
o8 08
=05 Q3 Flz =05
04 04
03 03
ozt Ql 02
L Ald o
[ 02 04 08 0.8 1 ] 0.2 0.4 08 03 1
i
Initial Regions, ¢ =0 Final Regions, ¢t = 0.1

FIG. 15. Atest problem for a 247.5-67.5-45 degree junction. Here, gach 1 and eacle; = 0.
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TABLE Il
Results for a 247.5-67.5-45 Degree Junction

Junction position Phase area changestor

At |Error| Conv. rate |Error| Conv. rate
0.01 2.65e-02 — 1.76e-02 —
0.005 2.48e-02 0.09 1.41e-02 0.33
0.0025 2.14e-02 0.22 1.09e-02 0.37
0.00125 1.73e-02 0.30 8.28e-03 0.40
0.000625 1.34e-02 0.37 6.16e-03 0.43
0.0003125 9.47e-03 0.51 4.30e-03 0.52

o We will also assume thall is a convex combination dfi”:2, U3, andU":s. This

requirement ensures that each componetd belongs to [0, 1] and that the component:
of Usumto 1.

One simple family of functions which satisfy these requirements is given by

n n
fn(UVu7 U}’zs7 UV13) — 3 UVlz/‘Ué/lz} —t]UV23/’U1yZ3| + nuy13/|U2V13|n . (8)
S (Ve [V VIV ARV VY

The next two subsections justify this choice bffor the casesi=1 andn=2. Larger
values ofn were found to produce less accurate results on the test problems we tried.
We now summarize by giving the generalized curvature algorithm:

GENERALIZED CURVATURE ALGORITHM.  Given an angle configuratia@, 6, 63) and
coefficients(y1z, 23, y13):

BEGIN

(1) Construct a projection triangle according to the projection triangle algorithm.
(2) Fori=1,...,3
SetU; (x, 0) equal to the characteristic function for tita region.

REPEAT for all stepsj, from 1 to the final step:
BEGIN

(3) For each coefficient = y15, v23, y13 and each region=1, 2, 3,

any — 21 1Y
FindU/ (x, jAt) usings », Vi
- =0 onoD
starting fromU;” (x, (j — 1) At) = Ui (x, (j — 1) At).
(4) SetU(x, jAt) = f,(Ur2, Ur= Urs) where f, in given by Eq. (8).
(5) “Sharpen™J = (U1, U,, Ug) according to the projection triangle defined
in step (1).
END
END
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4.2. Error Analysis

Inthe previous subsection, we proposed an algorithm for evolving junctions with a nor
velocity, vy = yij k, for arbitrary angle configurations. We now give asymptotic estimat
for the angles arising from this algorithm when the classical condition (3) holds.

Begin by lettingl'{}, T'23, and 'Y be the diffusion-generated approximations to th
branches of the junction after a tinae and let

€1 = LI'3lM10 — 04,
€2 = [I'1oI'03 — 6,

€3 = /[I'13l'3 — 03

be the initial errors in each junction angle (see Fig. 12). As outlined in Subsection 3.2,
straightforward (but tedious) to derive asymptotic estimates for the junction angles,

[THTTS 01 €1 12
Atmat | = + A +C| k23 | VAt +h.ot.
[THTAH 62 €2
K13

Unfortunately, the matrice& andC are far too complicated to reproduce here. Howeve
Fig. 16 gives contour plots of the spectral radiugdbr each angle configuratiaf, 6-, 63)
for the choicesf = f; and f = f, (see Eq. (8)).

Fromthese plots, itis clear than that the spectral radius is less than 1 (indeed, it is typi
much less than 1) for most angle configurations. For example, the spectral radius is
than 1 whenever the following simple (but crude) bound holds:

1759 degrees iff = f1

Furthermore, contour plots indicate that each eleme@ &f bounded independent of
At provided eachy; > 0. Thus, each step of the method produce®&’ At) error in the
junction angles which is rapidly dissipated during subsequent steps provided the spe
radius of A is less than 1 (e.g., whenever condition (9) holds). Similar to the case of
Nonsymmetric Junction Algorithm (see Subsection 3.2) this result explains the stab
of junction angles and suggests a source ofcig/At) error which arises in numerical
experiments (see the next section).

4.3. Numerical Experiments

We now apply the Generalized Curvature Algorithm to the case where each branch
junction moves with a different normal velocity, = yij .

For example, consider the evolution of the three phase problem given in Fig. 17. U
the Generalized Curvature Algorithm, the position of the triple point and the change
the area of2; were compared with the exact results (see Footnote 6) for sexerdihe
results from a number of experiments are reported in Table lIffer f; and in Table IV
for f = f,.

These results are suggestive of @/At) error which is experimentally the same a:
the found for pure motion by curvature.

Either f = f; or f = f, is adequate for a wide variety of problems (see the previo
subsection). The choicé = f; has a slightly wider range of applicability (see Eq. (9))
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(0,Pi,Pi) (Pi,0,Pi)

(Pi,Pi,0)

(0,Pi,Pi) (Pi,0,Pi)

(Pi,Pi,0)

FIG. 16. The spectral radii arising for each angle configurati@®no,, 6;). Here, the classical condition (3)
restricts each angle to be between 0 ando each configuration must belong to the triangular region with corne
(0,0, ), (0, %, 0), and(mw, 0, 0). (a) Smoothest selection= 1. (b) Alternative choicen = 2.
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T'ys
1 1
09 0.9
08 08
07 QZ 07
06 06
=05 QS Pl2 =05
04 04
03 0.3
Q
02 02
0.1 0.1
00 0.2 0.4 06 08 1 [} 02 0.4 08 08 t
I3
Initial Regions, t =0 Final Regions, ¢t = 0.2

FIG.17. Atestproblem fora150-90—120 degree junction. Here, yzs, y1s) = (sin(2x), sin(3x), sin(3x))
and eacle; =0.

The errors arising fronf = f, are often more regular, however (e.g., compare Tables
and 1V), which is a desirable property for determining an appropriate step size and
developing accurate, extrapolated algorithms [14].

5. MULTIPHASE MOTIONS

In the previous section we described a method to treat the case where each Brancl
of a junction moves with a normal speed,= y;j k. We now extend the algorithm to allow
more general multiphase motions which involve bulk energies (e.g., Fig. 1). Due to
complicated nature of the analysis, we justify our algorithms experimentally rather t
asymptotically throughout the remainder of this article.

5.1. Multiphase Motion Algorithm

To carry out a sharpening appropriate for the multiphase model, we must construct
projection triangles. In particular, our projection triangles must satisfy the following:

(a) Along each edge, the sharpening decision must reduce to the case of two [
flow (4) since edges correspond to regions which are infinitely far from triple points [8]

TABLE Il
Results for a 150-90-120 Degree Junction fdr=f;

Junction position Phase area changettor
At |Error| Conv. rate |Error| Conv. rate
0.01 1.27e-02 — 1.97e-03 —
0.005 9.83e-03 0.37 1.76e-03 0.16
0.0025 7.37e-03 0.42 1.44e-03 0.29
0.00125 5.38e-03 0.45 1.12e-03 0.37
0.000625 3.83e-03 0.49 8.32e-04 0.43

0.0003125 2.67e-03 0.52 6.01e-04 0.47
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TABLE IV
Results for a 150-90-120 Degree Junction fdr=f,

Junction position Phase area changetor
At |Error| Conv. rate |Error| Conv. rate

0.01 1.03e-02 — 4.76e-03 —
0.005 7.41e-03 0.47 3.00e-03 0.66
0.0025 5.32e-03 0.48 1.96e-03 0.62
0.00125 3.79e-03 0.49 1.31e-03 0.58
0.000625 2.67e-03 0.50 8.94e-04 0.55
0.0003125 1.87e-03 0.51 6.12e-04 0.55

(b) In the limit At — 0O, the projection triangle must coincide with the cése, e;3,
e3) = (0, 0, 0) to obtain junction angles which are consistent with the desired configurati

For the special case of symmetric junctions, these objectives are easily attained
simply set each branch of the decision triangle to a straight line {Farg, ) to the point
dictated by Eqg. (4). See Fig. 18 for an illustration of this construction.

For nonsymmetric junctions, appropriate projection triangles may be constructec
scaling and rotating the result of our original algorithm (see, e.g., Fig. 19) as follows:

PROJECTIONTRIANGLE ALGORITHM FOR MULTIPHASE MOTION.

Given an angle con-
figuration(6y, 6,, 63) and constantée; ,, €13, €3):

1. Construct a projection triangle using the algorithm given in Subsection 3.1. Repre

the boundaries between the regidRsand R; of the triangle in polar coordinates,
{(r, 6 (r))}, as is shown in Fig. 8.

(0,0,1)

A(1/3,1/3,1/3)

(0,1,0) pi2 (1,0,0)
FIG.18. The projectiontriangle fora 120-120-120 degree junction with (solid) and without (dotted) a cons
componenttothe motiopa, = (3+3e124/ 5L, 1€ /£, 00 p2s = (0, S+3ey /2, 1 —1es/2) i pis =

2702 2
1 1 At 1 1 At
(G + 283y 20 3 — 283/ 5 ):
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(0,0,1)

1 (419.2/0,309)

(0,1,0) p12 (1,0,0)
FIG.19. The projection triangle for a 160-80-120 degree junction with (solid) and without (dotted) a cons
componentto the motiop, = (3+3e121/ 2. §— 3121/ 21. 0): poa = (0, 1+ 1€y /&, 1—lepay/B): pra =
(G + 365/ 5. 0.1 — Jeisy/ o).

2. Scale and rotate each curve definedbg) according to

fo
—r

6ij (r) = 6; (r ) + 0p; — 6ij (ro), (10)

Pij

where

1 1 At 1 1 At
Pij = {5 T358\ 5, )81 {57385, )¢

61 06, 6 1
(222) bere

_‘
o
Il

on’ 27 21 2 ’
(1,0,00 ifi=1

8 =¢{010 ifi=2

0,0,1) ifi=3

and(rp,; , 6y, ) are the polar coordinates of the poipf,. This gives a simple expression
for each branch of the desired projection triangle,

{r 6y):0=r=<rp }.

Note that we have scaledin the first term of Eq. (10) so thaﬁ‘ij (-) is defined on the
appropriate domain, [0y, ]. The remaining two terms simply rotate each curve so th
property (a) above is satisfied.

Combining this algorithm with that of the previous section gives a method for evolvi
junctions according to the multiphase model:
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Lys
1 1
0.9 0.9
08 0.8
07 Q2 07
08 F12 08
=05 QB >0.5
04 04
03 03
02 Ql 02
0.1 o1
[} 02 04 08 08 1 0 02 04 08 08 1
Iys '
Initial Regions, t =0 Final Regions, t = 0.1

FIG. 20. A test problem for a 160-80-120 degree junction. He&ges, v»3, y13) = (sin(gn), sin(‘—;n),

sin(2x)) and(er, &3, &3) = (-2, -3, §).

MULTIPHASE MOTION ALGORITHM. Given an angle configuratiof®,, 6,, 63), coeffi-
cients(y12, y13. y23), and constantée;», €13, €3):

BEGIN
(1) Construct a projection triangle according to
the Projection Triangle Algorithm for Multiphase Motion.

(2) Carry out steps (2)—(5) of the Generalized Curvature Algorithm

using the projection triangle derived in step (1).
END

5.2. Numerical Experiments

We now apply the Multiphase Motion Algorithm to the case where each branch c
junction moves with a different normal velocity, = yij« + &;.
For example, consider the evolution of the three phase problem given in Fig. 20. U
the Multiphase Motion Algorithm withf = f, (see Eq. (8)), the position of the triple point
and the change in the area®f were compared with the exact results (see Footnote 6) 1
severalAt. The results from a number of experiments are reported in Table V.

TABLE V
Results for a 160-80-120 Degree Junction

Junction position Phase area changetor
At |Error| Conwv. rate |Error| Conv. rate
0.01 6.82e-02 — 2.61e-02 —
0.005 4.64e-02 0.56 1.83e-02 0.51
0.0025 3.20e-02 0.54 1.29e-02 0.51
0.00125 2.22e-02 0.53 9.11e-03 0.50
0.000625 1.55e-02 0.52 6.43e-03 0.50

0.0003125 1.09e-02 0.51 4.56e-03 0.50
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These results are suggestive of @/ At) error which is experimentally the same a:
that found for pure motion by curvature.

6. SHAPE CHANGES WITH MANY PHASE REGIONS

In the previous section, we described a method for evolving a three phase junction
a normal velocityp, = yij « + ;. To extend this method tophase regions, we apply two
additional considerations:

(1) For each point on the domain, the three lardéstl <i <r, are sharpened ac-
cording to the projection triangle for those components. All remaining components are
to zero during sharpening.

(2) The functionf, (see Eg. (8)) is extended tgphase regions:

o (0 W)

k%l k% j

= (0, o

ki, k#j

fa(U) =

)

Applying these modifications to the Multiphase Motion Algorithm gives a method f
approximating the model (1) when many phase regions are present. We have found th
results from this method agree with the recent variational approach given in [18] even v
topological mergings and breakings occur.

For example, consider the evolution of the four phase problem given in Fig. 21a. Using
diffusion-generated approach with= f; and a step size okt =0.000125, the interfaces
were determined for several timégsee Figs. 21b—21d). These results agree well with ti
variational approach (cf. Fig. 22).

Our new algorithm also naturally treats problems which involve the formation of jur
tions. Consider, for example, the evolution of the four regions given in Fig. 23a. Using
diffusion-generated approach with= f; and a step sizat = 0.00025, the interfaces were
determined for several timets,Here, we find that the interface between the regi@pand
Q, travels to the right to form two new junctions (see Fig. 23b). These triple points evet
ally move to the top and bottom of regiofis and2,4 as is shown in Figs. 23c and 23d. It
is noteworthy that this example cannot be treated using the variational approach [18],
that method is inconsistent with the given valueg;of

7. SUMMARY

In this work, we have presented a diffusion-generated approach for evolving mult
junctions according to the multiphase model (1). Our method naturally treats topolog
mergings and breakings, produces no overlapping regions or vacuums, and can be
very fast. We have also shown that our approach may be applied to an important cla
problems which cannot be treated using other methods (see the previous section).

Asymptotic expansions were also given to explain why our method reproduces the co
junction angles (to withi)(+/At)) and numerical studies were provided to show that ot
approach agrees with front tracking [4] and a recent variational method [18] on a variet
simple problems.

Further work suggested by the results of this paper include a more detailed theore
investigation of our method and an extension to the full range of possible model probl
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FIG.21. Atestproblem atvarious times,Here(yiz, y1s, y1a, Y23, v2a, vaa) = (2, 3, 2,1, 2, 1), (enz, €13, €14,

14 %

€3, €4, €34) = (—3. 3. —2, 1, -1, —2) and all angles are prescribed by the classical condition (3).
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FIG. 22. The solution from the variational approach at 0.03.
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FIG. 23. Atest problem at various times, Here (y12, y13, Y14, V23, Y24, ¥32) = (1, 1, 1, “‘—2‘3’, 1, 1), (en, e,
€14, €3, €4, €31) = (—4, —1, 0, 3, 4, 1) and all angles are prescribed by the classical condition (3).

(currently, our approach cannot be applied if sopjeis sufficiently small; see subsec-
tion 4.2). Finally, extensions to anisotropic motions (e.g., [7]) and to constrained moti
(e.g., [15]) would be of interest.
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